1,4-DIHYDROQUINOLINE.¹

A.J. Birch and P.G. Lehman

Research School of Chemistry, Australian National University,

P.O. Box 4, Canberra, ACT 2600, Australia.

(Received in UK 17 May 1974; accepted for publication 30 May 1974)

We wish to report the preparation and characterization of 1,4-dihydroquinoline [I],

hitherto believed² to be unknown, although the isomeric compound, 1,2-dihydroquinoline [II], is already well documented.³

Recently we described⁴ a new preparative method for 1-alky1-1,4-dihydroquinolines, via reductive alkylation of the parent aza-aromatics. Since the mechanism^{4,5} of this reaction involves a dianionic intermediate which is protonated by ammonia at C-4 to yield a stable nitranion, we anticipated that compound [I] should now also be accessible.

Treatment of quinoline with 2.0 equiv. of lithium in anhydrous ammonia at -33° , followed by quenching with NH₄Cl, gave as the only observable product a solid⁶, which crystallized from ether/petroleum as plates, m.p. 46-47°. U.v. (EtOH) λ max. 298 nm, c.f. 303 nm for the N-Me derivative of [I]⁴ and 343 nm for [II]³. I.r. (CH₂Cl₂) 3420 cm⁻¹ (N-H) and 1660 cm⁻¹ (C=C), c.f. 1660 cm⁻¹ for the N-Me derivative of [I]⁴. P.m.r. (100 MHz, CD₂Cl₂) δ 7.15-6.34, m (4H) aromatic; 5.99, m (1H) H-2; 5.13, br. s. (1H) N-H; 4.46, m (1H) H-3; 3.49, d (2H) J₃ 4 Hz, H-4. Addition of D₂O eliminated the N-H resonance and simplified the multiplicities of H-2 and H-3, c.f. ref.⁴; H-2 d of t, J₂ 3 8Hz, J₂ 4 1.5Hz and H-3 quint.

The spectral data are consistent only with the heterocyclic enamine structure [I]. Furthermore, cycloaddition of p-bromophenyl azide, a typical enamine reaction, gave a triazoline derivative, m.p. 151-152⁰, which from spectral and analytical evidence has the structure [III].

It has been claimed previously⁷ that reduction of quinoline with sodium in ammonia at -65° , followed by NH₄Cl, produces 1,2-dihydroquinoline [II]. Repetition of this experiment, with strict adherence to the published conditions, gave a compound, m.p. 46-47[°], spectrally identical with ours. The m.p. of authentic³ [II] is 72-74.5[°].

We conclude that the earlier assignment⁷ of structure [II] to the reduction product, which has frequently been cited without question, is unfounded and that reduction of quinoline with either lithium or sodium in ammonia produces only 1,4-dihydroquinoline [I].

References.

- 1. Part II in the series, Metal-Ammonia Reduction of Aromatic Nitrogen Heterocycles.
- J.W. Bunting and W.G. Meathrel, Tetrahedron Letters, 133 (1971); J.A. Joule and G.F. Smith, "Heterocyclic Chemistry", Van Nostrand Reinhold, 1972, p.95.
- W.S. Johnson and B.G. Buell, J. Amer. Chem. Soc., <u>74</u>, 4517 (1952); F. Bohlmann, Chem. Ber., <u>85</u>, 390 (1952); K.W. Rosenmund and F. Zymalkowski, Chem. Ber., <u>86</u>, 37 (1953);
 R.F. Collins, J. Chem. Soc., 1954, 3641; W.P. Neumann, Ann., 618, 90 (1958).
- 4. A.J. Birch and P.G. Lehman, J.C.S. Perkin I, 1973, 2754.
- 5. A.J. Birch and P.G. Lehman, part III, to be published.
- 6. All manipulations were carried out under dry N_2 in glassware prewashed with aq. alkali. The solid was unstable at r.t. but dilute ether solutions could be stored for 24 hr at -15⁰. Physical measurements utilized freshly isolated material.
- 7. W. Hückel and L. Hagedorn, Chem. Ber., 90, 752 (1957).